The HTX-Extender Model A allows to easily access the signals of a HTX expansion connector. The extender is plugged between the Device-Under-Test (DUT) and the HTX connector of the mainboard. It is most suitable for the HTX-Board but can of course also be used with any other HTX device.

The HTX-Extender Model A is best used using a Logic State Analyser. General purpose probes with flying leads are optimal to connect to this adapter. Features:

- Measurement of all HT signals, 16bit data, clocks and control for each direction
- Measurement of the current drawn for all HTX voltages
- All differential signals for 8bit mode accessible on top
- Impedance-controlled design

Another feature is the measurement of the current drawn for each supply voltage of the HTX connector. The is done by measuring the voltage drop over a 0.1Ohm resistor, which can be accessed over a 2.54mm stripline.

The HTX-Extender Model A is best used using a Logic State Analyser. General purpose probes with flying leads are optimal to connect to this adapter. Features:

- Measurement of all HT signals, 16bit data, clocks and control for each direction
- Measurement of the current drawn for all HTX voltages
- All differential signals for 8bit mode accessible on top
- Impedance-controlled design

Measurement of the following differential signals:
- CADIN_H/L[15:0]
- CADOUT_H/L[15:0]
- CLKIN_H/L[1:0]
- CLKOUT_H/L[1:0]
- CTLIN_H/L
- CTLOUT_H/L
- REFCLK_H/L

Measurement of the following single-ended signals:
- REFCLK66
- PWROK
- RESET#
- JTAG_TMS, _TDO, _TDI, _TCLK and _RST#
- LDTSTOP#
- SM_CLK and SM_DAT

Current measurement for the following supply voltages:
- 12V
- 3.3V
- 3.3V (aux)
- 1.2V (VLDT)

This is a development of the University of Heidelberg Computer Architecture Group.